While the report generation functionality of pander
and knitr
do overlap, we feel that the most powerful way to use R/knitr/pander
for report generation is to utilize them together. This short vignette aims to explain how to embed pander
output in reports generated by knitr
. If you are not aware of knitr
, be sure to check out the project’s homepage for extensive documentation and examples.
One of knitr
’s most useful features is the ability to convert tables to output format on the fly. For example:
head(iris)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
knitr::kable(head(iris))
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa |
4.9 | 3.0 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
4.6 | 3.1 | 1.5 | 0.2 | setosa |
5.0 | 3.6 | 1.4 | 0.2 | setosa |
5.4 | 3.9 | 1.7 | 0.4 | setosa |
However, kable
table generator is simple by design, and does not capture all the variety of classes that R
has to offer. For example, CrossTable
and tabular
are not supported:
library(descr, quietly = TRUE)
ct <- CrossTable(mtcars$gear, mtcars$cyl)
#> Warning in chisq.test(tab, correct = FALSE, ...): Chi-squared approximation
#> may be incorrect
knitr::kable(ct)
#> Error in as.data.frame.default(x): cannot coerce class ""CrossTable"" to a data.frame
library(tables, quietly = TRUE)
#>
#> Attaching package: 'Hmisc'
#> The following objects are masked from 'package:base':
#>
#> format.pval, round.POSIXt, trunc.POSIXt, units
tab <- tabular( (Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )
knitr::kable(tab)
#> Error in `colnames<-`(`*tmp*`, value = c("term", "term", "term", "term", : length of 'dimnames' [2] not equal to array extent
This is where pander
comes in handy, as pander
supports rendering for many popular classes:
methods(pander)
#> [1] pander.anova* pander.aov*
#> [3] pander.aovlist* pander.Arima*
#> [5] pander.call* pander.cast_df*
#> [7] pander.character* pander.clogit*
#> [9] pander.coxph* pander.cph*
#> [11] pander.CrossTable* pander.data.frame*
#> [13] pander.data.table* pander.Date*
#> [15] pander.default* pander.density*
#> [17] pander.describe* pander.ets*
#> [19] pander.evals* pander.factor*
#> [21] pander.formula* pander.ftable*
#> [23] pander.function* pander.glm*
#> [25] pander.Glm* pander.gtable*
#> [27] pander.htest* pander.image*
#> [29] pander.irts* pander.list*
#> [31] pander.lm* pander.lme*
#> [33] pander.logical* pander.lrm*
#> [35] pander.manova* pander.matrix*
#> [37] pander.microbenchmark* pander.mtable*
#> [39] pander.name* pander.nls*
#> [41] pander.NULL* pander.numeric*
#> [43] pander.ols* pander.orm*
#> [45] pander.polr* pander.POSIXct*
#> [47] pander.POSIXlt* pander.prcomp*
#> [49] pander.randomForest* pander.rapport*
#> [51] pander.rlm* pander.sessionInfo*
#> [53] pander.smooth.spline* pander.stat.table*
#> [55] pander.summary.aov* pander.summary.aovlist*
#> [57] pander.summary.glm* pander.summary.lm*
#> [59] pander.summary.lme* pander.summary.manova*
#> [61] pander.summary.nls* pander.summary.polr*
#> [63] pander.summary.prcomp* pander.summary.rms*
#> [65] pander.summary.survreg* pander.summary.table*
#> [67] pander.survdiff* pander.survfit*
#> [69] pander.survreg* pander.table*
#> [71] pander.tabular* pander.ts*
#> [73] pander.zoo*
#> see '?methods' for accessing help and source code
Also, pander
is integrated with knitr
by default. pander
simply identifies if knitr
is running in the background, and if so, it uses capture.output
to return the resulting string as an knit_asis
object, meaning that you do not need to specify the results='asis'
option in your knitr chunk:
library(descr, quietly = TRUE)
pander(CrossTable(mtcars$gear, mtcars$cyl))
#> Warning in chisq.test(tab, correct = FALSE, ...): Chi-squared approximation
#> may be incorrect
mtcars$gear |
mtcars$cyl 4 |
6 |
8 |
Total |
---|---|---|---|---|
3 N Chi-square Row(%) Column(%) Total(%) |
1 3.3502 6.6667% 9.0909% 3.125% |
2 0.5003 13.3333% 28.5714% 6.250% |
12 4.5054 80.0000% 85.7143% 37.500% |
15 46.8750% |
4 N Chi-square Row(%) Column(%) Total(%) |
8 3.6402 66.6667% 72.7273% 25.000% |
4 0.7202 33.3333% 57.1429% 12.500% |
0 5.2500 0.0000% 0.0000% 0.000% |
12 37.5000% |
5 N Chi-square Row(%) Column(%) Total(%) |
2 0.0460 40.0000% 18.1818% 6.250% |
1 0.0080 20.0000% 14.2857% 3.125% |
2 0.0161 40.0000% 14.2857% 6.250% |
5 15.6250% |
Total |
11 34.375% |
7 21.875% |
14 43.75% |
32 |
library(tables, quietly = TRUE)
tab <- tabular( (Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )
pander(tab)
Species |
n |
Sepal.Length mean |
sd |
Sepal.Width mean |
sd |
---|---|---|---|---|---|
setosa | 50 | 5.01 | 0.35 | 3.43 | 0.38 |
versicolor | 50 | 5.94 | 0.52 | 2.77 | 0.31 |
virginica | 50 | 6.59 | 0.64 | 2.97 | 0.32 |
All | 150 | 5.84 | 0.83 | 3.06 | 0.44 |
In a nutshell, this is achieved by modification that whenever you call pander
inside of a knitr
document, instead of returning the markdown text to the standard output (the default behavior), pander
returns a knit_asis
class object, which renders correctly in the resulting document — without the double comment chars, thus properly rendering the tables in HTML, PDF, or other document formats.
If you don’t want the results of pander
to be converted automatically, just set knitr.auto.asis
to FALSE
using panderOptions
:
panderOptions('knitr.auto.asis', FALSE)
pander(head(iris))
#>
#> -------------------------------------------------------------------
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> -------------- ------------- -------------- ------------- ---------
#> 5.1 3.5 1.4 0.2 setosa
#>
#> 4.9 3 1.4 0.2 setosa
#>
#> 4.7 3.2 1.3 0.2 setosa
#>
#> 4.6 3.1 1.5 0.2 setosa
#>
#> 5 3.6 1.4 0.2 setosa
#>
#> 5.4 3.9 1.7 0.4 setosa
#> -------------------------------------------------------------------
panderOptions('knitr.auto.asis', TRUE)
One frequenly asked question is how to use pander
with knitr
in a loop or vectorized function. For example, we have 3 tables that we want to render using lapply
:
dfs <- list(mtcars[1:3, 1:4], mtcars[4:6, 1:4], mtcars[7:9, 1:4])
lapply(dfs, pander)
#> [[1]]
#> [1] "\n-------------------------------------------\n mpg cyl disp hp \n------------------- ----- ----- ------ ----\n **Mazda RX4** 21 6 160 110 \n\n **Mazda RX4 Wag** 21 6 160 110 \n\n **Datsun 710** 22.8 4 108 93 \n-------------------------------------------\n\n"
#> attr(,"class")
#> [1] "knit_asis"
#> attr(,"knit_cacheable")
#> [1] NA
#>
#> [[2]]
#> [1] "\n-----------------------------------------------\n mpg cyl disp hp \n----------------------- ----- ----- ------ ----\n **Hornet 4 Drive** 21.4 6 258 110 \n\n **Hornet Sportabout** 18.7 8 360 175 \n\n **Valiant** 18.1 6 225 105 \n-----------------------------------------------\n\n"
#> attr(,"class")
#> [1] "knit_asis"
#> attr(,"knit_cacheable")
#> [1] NA
#>
#> [[3]]
#> [1] "\n----------------------------------------\n mpg cyl disp hp \n---------------- ----- ----- ------ ----\n **Duster 360** 14.3 8 360 245 \n\n **Merc 240D** 24.4 4 146.7 62 \n\n **Merc 230** 22.8 4 140.8 95 \n----------------------------------------\n\n"
#> attr(,"class")
#> [1] "knit_asis"
#> attr(,"knit_cacheable")
#> [1] NA
As you can see, this doesn’t work correctly because pander
tries to return a knit_asis
class object when run inside knitr
, but for loops/vectorized functions this results in incorrect output. The recommended way to solve this is to disable this behavior by setting knitr.auto.asis
to FALSE
using panderOptions
. However, we also need to tell knitr
to convert the table on the fly by specifying results='asis'
in the chunk options:
panderOptions('knitr.auto.asis', FALSE)
dfs <- list(mtcars[1:3, 1:4], mtcars[4:6, 1:4], mtcars[7:9, 1:4])
invisible(lapply(dfs, pander))
mpg | cyl | disp | hp | |
---|---|---|---|---|
Mazda RX4 | 21 | 6 | 160 | 110 |
Mazda RX4 Wag | 21 | 6 | 160 | 110 |
Datsun 710 | 22.8 | 4 | 108 | 93 |
mpg | cyl | disp | hp | |
---|---|---|---|---|
Hornet 4 Drive | 21.4 | 6 | 258 | 110 |
Hornet Sportabout | 18.7 | 8 | 360 | 175 |
Valiant | 18.1 | 6 | 225 | 105 |
mpg | cyl | disp | hp | |
---|---|---|---|---|
Duster 360 | 14.3 | 8 | 360 | 245 |
Merc 240D | 24.4 | 4 | 146.7 | 62 |
Merc 230 | 22.8 | 4 | 140.8 | 95 |