Core functionality of pander
is centered around pandoc.table
, which is aimed at rendering tables in markdown
. In case of 2D tables, pander
calls pandoc.table
internally, thus in such cases pander
and pandoc.table
support the same argument and in this vignette will be used iterchangingly. pandoc.table
has a wide variety of options (highlighting, styles, etc.) and this vignette aims to give a more detailed overview of the most common options. pander
comes with a variety of globally adjustable options, which have an effect on the result of your reports. You can query and update these options with the panderOptions
function.
Since pander
aims at rendering R objects into Pandoc’s markdown all four (multiline
, simple
, grid
, rmarkdown
) of Pandoc’s formats are supported. Users are advised to stick with the default multiline
style, but if there is a need to change it either specify style
argument when calling pander/pandoc.table
or change the default style
using panderOptions
.
multiline
tables allow headers and table rows to span multiple lines of text (but cells that span multiple columns or rows of the table are not supported). Also note that, for simplicity, line breaks are removed from cells by default, so multiline cells are typically the result of splitting large cells or setting keep.line.breaks
to TRUE
:
m <- data.frame('Value\n1', 'Value\n2')
colnames(m) <- c('Multiline\nCol1', 'Multiline\nCol2')
pandoc.table(m, keep.line.breaks = TRUE)
#>
#> -----------------------
#> Multiline Multiline
#> Col1 Col2
#> ----------- -----------
#> Value Value
#> 1 2
#> -----------------------
m <- mtcars[1:3, 1:4]
pandoc.table(m)
#>
#> -------------------------------------------
#> mpg cyl disp hp
#> ------------------- ----- ----- ------ ----
#> Mazda RX4 21 6 160 110
#>
#> Mazda RX4 Wag 21 6 160 110
#>
#> Datsun 710 22.8 4 108 93
#> -------------------------------------------
simple
tables are have more compact syntax that all other styles, but don’t they support multiline cells:
m <- mtcars[1:3, 1:4]
pandoc.table(m, style = 'simple')
#>
#>
#> mpg cyl disp hp
#> ------------------- ----- ----- ------ ----
#> Mazda RX4 21 6 160 110
#> Mazda RX4 Wag 21 6 160 110
#> Datsun 710 22.8 4 108 93
m <- data.frame('Value\n1', 'Value\n2')
colnames(m) <- c('Multiline\nCol1', 'Multiline\nCol2')
pandoc.table(m, keep.line.breaks = TRUE, style='simple')
#> Error in eval(expr, envir, enclos): Pandoc does not support newlines in simple or Rmarkdown table format!
grid
format is really handy for emacs
users (Emacs table mod) and it does support block elements (multiple paragraphs, code blocks, lists, etc.) inside cells, but cells can’t span multiple columns or rows. Alignments are not supported for grid tables by most parsers, meaning that even though pander
will produce a table with alignment, it will be lost during conversion from markdown
to HTML/PDF/DOCX
.
m <- mtcars[1:3, 1:4]
pandoc.table(m, style = 'grid')
#>
#>
#> +---------------------+-------+-------+--------+------+
#> | | mpg | cyl | disp | hp |
#> +=====================+=======+=======+========+======+
#> | Mazda RX4 | 21 | 6 | 160 | 110 |
#> +---------------------+-------+-------+--------+------+
#> | Mazda RX4 Wag | 21 | 6 | 160 | 110 |
#> +---------------------+-------+-------+--------+------+
#> | Datsun 710 | 22.8 | 4 | 108 | 93 |
#> +---------------------+-------+-------+--------+------+
m <- data.frame('Value\n1', 'Value\n2')
colnames(m) <- c('Multiline\nCol1', 'Multiline\nCol2')
pandoc.table(m, keep.line.breaks = TRUE, style='grid')
#>
#>
#> +-------------+-------------+
#> | Multiline | Multiline |
#> | Col1 | Col2 |
#> +=============+=============+
#> | Value | Value |
#> | 1 | 2 |
#> +-------------+-------------+
rmarkdown
or pipe table format, is often used directly with knitr
, since it was supported by the first versions of the markdown
package. It is similar to simple
table in that multiline cells are also not supported. The beginning and ending pipe characters are optional, but pipes are required between all columns:
m <- mtcars[1:3, 1:4]
pandoc.table(m, style = 'rmarkdown')
#>
#>
#> | | mpg | cyl | disp | hp |
#> |:-------------------:|:-----:|:-----:|:------:|:----:|
#> | Mazda RX4 | 21 | 6 | 160 | 110 |
#> | Mazda RX4 Wag | 21 | 6 | 160 | 110 |
#> | Datsun 710 | 22.8 | 4 | 108 | 93 |
m <- data.frame('Value\n1', 'Value\n2')
colnames(m) <- c('Multiline\nCol1', 'Multiline\nCol2')
pandoc.table(m, keep.line.breaks = TRUE, style='rmarkdown')
#> Error in eval(expr, envir, enclos): Pandoc does not support newlines in simple or Rmarkdown table format!
pander
allows users to control cell alignment (left
, right
or center/centre
) in a table directly by setting the justify
parameter when calling pander/pandoc.table
. Note that it is possible to specify alignment for each column separately by supplying a vector to justify:
pandoc.table(head(iris[,1:3], 2), justify = 'right')
#>
#> -------------------------------------------
#> Sepal.Length Sepal.Width Petal.Length
#> -------------- ------------- --------------
#> 5.1 3.5 1.4
#>
#> 4.9 3 1.4
#> -------------------------------------------
pandoc.table(head(iris[,1:3], 2), justify = c('right', 'center', 'left'))
#>
#> -------------------------------------------
#> Sepal.Length Sepal.Width Petal.Length
#> -------------- ------------- --------------
#> 5.1 3.5 1.4
#>
#> 4.9 3 1.4
#> -------------------------------------------
Another way to define alignment is by using a permanent option table.alignment.default/table.alignment.rownames
in panderOptions
(preferred way) or by using set.alignment
function (legacy way of setting alignment for next table or permanently) which support setting alignment separately for cells and rownames:
set.alignment('left', row.names = 'right') # set only for next table since permanent parameter is falce
pandoc.table(mtcars[1:2, 1:5])
#>
#> --------------------------------------------------
#> mpg cyl disp hp drat
#> ------------------- ----- ----- ------ ---- ------
#> Mazda RX4 21 6 160 110 3.9
#>
#> Mazda RX4 Wag 21 6 160 110 3.9
#> --------------------------------------------------
Interesting application for this functionality is specifying a function that takes the R object as its argument to compute some unique alignment for your table based on e.g. column values or variable types:
panderOptions('table.alignment.default',
function(df)
ifelse(sapply(df, mean) > 2, 'left', 'right'))
pandoc.table(head(iris[,1:3], 2))
#>
#> -------------------------------------------
#> Sepal.Length Sepal.Width Petal.Length
#> -------------- ------------- --------------
#> 5.1 3.5 1.4
#>
#> 4.9 3 1.4
#> -------------------------------------------
panderOptions('table.alignment.default', 'center')
One of the great features of pander
is the ease of highlighting rows, columns and cells in a table. This is a native markdown
feature without custom HTML
or LaTeX
-only tweaks, so all HTML/PDF/MS Word/OpenOffice
etc. formats are supported.
This can be achieved by specifying one of the arguments below when calling pander
/pandoc.table
or change default style using panderOptions
:
The emphasize.italics
helpers would turn the affected cells to italic, emphasize.strong
would apply a bold style to the cell and emphasize.verbatim
would apply a verbatim
style to the cell. A cell can be also italic, bold and verbatim
at the same time.
Those functions and arguments ending in rows or cols take a vector (like which columns or rows to emphasize in a table), while the cells argument take either a vector (for one dimensional “tables”) or an array-like data structure with two columns holding row and column indexes of cells to be emphasized – just like what which(..., arr.ind = TRUE)
returns:
t <- mtcars[1:3, 1:5]
emphasize.italics.cols(1)
emphasize.italics.rows(1)
emphasize.strong.cells(which(t > 20, arr.ind = TRUE))
pandoc.table(t)
#>
#> --------------------------------------------------
#> mpg cyl disp hp drat
#> ------------------- ----- ----- ------ ---- ------
#> Mazda RX4 21 6 160 110 3.9
#>
#> Mazda RX4 Wag 21 6 160 110 3.9
#>
#> Datsun 710 22.8 4 108 93 3.85
#> --------------------------------------------------
pandoc.table(t, emphasize.verbatim.rows = 1, emphasize.strong.cells = which(t > 20, arr.ind = TRUE))
#>
#> --------------------------------------------------
#> mpg cyl disp hp drat
#> ------------------- ----- ----- ------ ---- ------
#> Mazda RX4 21 6 160 110 3.9
#>
#> Mazda RX4 Wag 21 6 160 110 3.9
#>
#> Datsun 710 22.8 4 108 93 3.85
#> --------------------------------------------------
For more elaborative examples, please see our blog post - Highlight cells in markdown tables.
pander/pandoc.table
is able to deal with wide tables. Ever had an issue in LaTeX
or MS Word
when trying to print a correlation matrix of 40 variables? This problem is carefully addressed with split.table
parameter:
pandoc.table(mtcars[1:2, ], style = "grid", caption = "Wide table to be split!")
#>
#>
#> +---------------------+-------+-------+--------+------+--------+-------+
#> | | mpg | cyl | disp | hp | drat | wt |
#> +=====================+=======+=======+========+======+========+=======+
#> | Mazda RX4 | 21 | 6 | 160 | 110 | 3.9 | 2.62 |
#> +---------------------+-------+-------+--------+------+--------+-------+
#> | Mazda RX4 Wag | 21 | 6 | 160 | 110 | 3.9 | 2.875 |
#> +---------------------+-------+-------+--------+------+--------+-------+
#>
#> Table: Wide table to be split! (continued below)
#>
#>
#>
#> +---------------------+--------+------+------+--------+--------+
#> | | qsec | vs | am | gear | carb |
#> +=====================+========+======+======+========+========+
#> | Mazda RX4 | 16.46 | 0 | 1 | 4 | 4 |
#> +---------------------+--------+------+------+--------+--------+
#> | Mazda RX4 Wag | 17.02 | 0 | 1 | 4 | 4 |
#> +---------------------+--------+------+------+--------+--------+
split.table
defaults to 80 characters and to turn it off, set split.table
to Inf
:
pandoc.table(mtcars[1:2, ], style = "grid",
caption = "Wide table to be split!", split.table = Inf)
#>
#>
#> +---------------------+-------+-------+--------+------+--------+-------+--------+------+------+--------+--------+
#> | | mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
#> +=====================+=======+=======+========+======+========+=======+========+======+======+========+========+
#> | Mazda RX4 | 21 | 6 | 160 | 110 | 3.9 | 2.62 | 16.46 | 0 | 1 | 4 | 4 |
#> +---------------------+-------+-------+--------+------+--------+-------+--------+------+------+--------+--------+
#> | Mazda RX4 Wag | 21 | 6 | 160 | 110 | 3.9 | 2.875 | 17.02 | 0 | 1 | 4 | 4 |
#> +---------------------+-------+-------+--------+------+--------+-------+--------+------+------+--------+--------+
#>
#> Table: Wide table to be split!
Also, pander
tries to split too wide cells into multiline cells. The maximum number of characters in a cell is specified by the split.cells
parameter (defaults to 30), which can be a single value, vector (values for each column separately) and relative vector (percentages of split.tables
parameter). Please not that this only works for multiline
and grid
tables:
df <- data.frame(a = 'Lorem ipsum', b = 'dolor sit', c = 'amet')
pandoc.table(df, split.cells = 5)
#>
#> ----------------
#> a b c
#> ----- ----- ----
#> Lorem dolor amet
#> ipsum sit
#> ----------------
pandoc.table(df, split.cells = c(5, 20, 5))
#>
#> --------------------
#> a b c
#> ----- --------- ----
#> Lorem dolor sit amet
#> ipsum
#> --------------------
pandoc.table(df, split.cells = c("80%", "10%", "10%"))
#>
#> ----------------------
#> a b c
#> ----------- ----- ----
#> Lorem ipsum dolor amet
#> sit
#> ----------------------
pandoc.table(df, split.cells = 5, style = 'simple')
#>
#>
#> a b c
#> ----------- --------- ----
#> Lorem ipsum dolor sit amet
In some cases it is also useful to split too long words with hyphens, and pander
uses koRpus
functionality for that. Just specify use.hyphening
argument and have koRpus
installed:
pandoc.table(data.frame(baz = 'foobar', foo='accoutrements'),
use.hyphening = TRUE, split.cells = 3)
#>
#> --------------
#> baz foo
#> ----- --------
#> foo- ac-
#> bar cou-
#> trements
#> --------------
pander/pandoc.table
deals with formatting numbers by having 4 parameters:
round
to the number of decimal places.digits
to specify how many significant digits are to be used for numericdecimal.mark/big.mark
to specify character for decimal point/orders of magnituderound
and digits
parameter can be a vector specifying values for each column (has to be the same length as number of columns). Values for non-numeric columns will be disregarded.
Now let’s get to some examples:
r <- matrix(c(283764.97430, 29.12345678901, -7.1234, -100.1), ncol = 2)
pandoc.table(r, round = 2)
#>
#> ------- ------
#> 283765 -7.12
#>
#> 29.12 -100.1
#> ------- ------
pandoc.table(r, round = c(4,2)) # vector for each column
#>
#> ------- ------
#> 283765 -7.12
#>
#> 29.12 -100.1
#> ------- ------
pandoc.table(r, digits = 2)
#>
#> ------- -----
#> 283765 -7.1
#>
#> 29 -100
#> ------- -----
pandoc.table(r, digits = c(0, 5)) # vector for each column
#>
#> --------- --------
#> %#0.0-1e -7.1234
#>
#> 29 -100.1
#> --------- --------
pandoc.table(r, big.mark = ',')
#>
#> -------- -------
#> 283,765 -7.123
#>
#> 29.12 -100.1
#> -------- -------
pandoc.table(r, decimal.mark = ',')
#>
#> ------- -------
#> 283765 -7,123
#>
#> 29,12 -100,1
#> ------- -------
Functionality described in other sections is most notable, but pander/pandoc.table
also has smaller nifty features that are worth mentioning:
plain.ascii
- allows to have the output without markdown
markup:pandoc.table(mtcars[1:3, 1:4])
#>
#> -------------------------------------------
#> mpg cyl disp hp
#> ------------------- ----- ----- ------ ----
#> Mazda RX4 21 6 160 110
#>
#> Mazda RX4 Wag 21 6 160 110
#>
#> Datsun 710 22.8 4 108 93
#> -------------------------------------------
pandoc.table(mtcars[1:3, 1:4], plain.ascii = TRUE)
#>
#> -------------------------------------------
#> mpg cyl disp hp
#> ------------------- ----- ----- ------ ----
#> Mazda RX4 21 6 160 110
#>
#> Mazda RX4 Wag 21 6 160 110
#>
#> Datsun 710 22.8 4 108 93
#> -------------------------------------------
caption
- set caption (string) to be shown under the table:pandoc.table(mtcars[1:3, 1:5], style = "grid", caption = "My caption!")
#>
#>
#> +---------------------+-------+-------+--------+------+--------+
#> | | mpg | cyl | disp | hp | drat |
#> +=====================+=======+=======+========+======+========+
#> | Mazda RX4 | 21 | 6 | 160 | 110 | 3.9 |
#> +---------------------+-------+-------+--------+------+--------+
#> | Mazda RX4 Wag | 21 | 6 | 160 | 110 | 3.9 |
#> +---------------------+-------+-------+--------+------+--------+
#> | Datsun 710 | 22.8 | 4 | 108 | 93 | 3.85 |
#> +---------------------+-------+-------+--------+------+--------+
#>
#> Table: My caption!
missing
- set a string to replace missing values:m <- mtcars[1:3, 1:5]
m$mpg <- NA
pandoc.table(m, missing = '?')
#>
#> --------------------------------------------------
#> mpg cyl disp hp drat
#> ------------------- ----- ----- ------ ---- ------
#> Mazda RX4 ? 6 160 110 3.9
#>
#> Mazda RX4 Wag ? 6 160 110 3.9
#>
#> Datsun 710 ? 4 108 93 3.85
#> --------------------------------------------------