Rapport package team

t-test Template

2011-04-26 20:25 CET

Contents

Description
Introduction
Overview
Descriptives
Diagnostics
Results
Description
Introduction
Overview
Descriptives
Diagnostics
Results

Description

A t-test report with table of descriptives, diagnostic tests and t-test specific statistics.

Introduction

In a nutshell, t-test is a statistical test that assesses hypothesis of equality of two means. But in theory, any hypothesis test that yields statistic which follows t-distribution can be considered a t-test. The most common usage of t-test is to:

- compare the mean of a variable with given test mean value **one-sample** t-test
- compare means of two variables from independent samples independent samples t-test
- compare means of two variables from dependent samples **paired-samples** t-test

Overview

Independent samples *t-test* is carried out with *Internet usage in leisure time* (hours per day) as dependent variable, and *Gender* as independent variable. Confidence interval is set to 95%. Equality of variances wasn't assumed.

Descriptives

In order to get more insight on the underlying data, a table of basic descriptive statistics is displayed below.

Gender	\min	max	mean	sd	var	median	IQR
male	0	12	3.27	1.953	3.816	3	3
female	0	12	3.064	2.355	5.544	2	3

skewness	kurtosis
0.9443	0.9858

1.87

1.398

Table 1: Table continues below

Diagnostics

Since *t-test* is a parametric technique, it sets some basic assumptions on distribution shape: it has to be *normal* (or approximately normal). A few normality test are to be applied, in order to screen possible departures from normality.

Normality Tests We will use *Shapiro-Wilk*, *Lilliefors* and *Anderson-Darling* tests to screen departures from normality in the response variable (*Internet usage in leisure time (hours per day)*).

N	р	
Shapiro-Wilk normality test	0.9001	1.618e-20
Lilliefors (Kolmogorov-Smirnov) normality test	0.168	3e-52
Anderson-Darling normality test	18.75	7.261e-44

As you can see, applied tests yield different results on hypotheses of normality, so you may want to stick with one you find most appropriate or you trust the most.

Results

Welch Two Sample t-test was applied, and significant differences were found.

	statistic	df	р	$\operatorname{CI}(\operatorname{lower})$	CI(upper)
t	1.148	457.9	0.2514	-0.1463	0.5576

Description

A t-test report with table of descriptives, diagnostic tests and t-test specific statistics.

Introduction

In a nutshell, t-test is a statistical test that assesses hypothesis of equality of two means. But in theory, any hypothesis test that yields statistic which follows t-distribution can be considered a t-test. The most common usage of t-test is to:

- compare the mean of a variable with given test mean value **one-sample** t-test
- compare means of two variables from independent samples independent samples t-test
- compare means of two variables from dependent samples $\mathbf{paired}\text{-}\mathbf{samples}$ t-test

Overview

One-sample t-test is carried out with Internet usage in leisure time (hours per day) as dependent variable. Confidence interval is set to 95%. Equality of variances wasn't assumed.

Descriptives

In order to get more insight on the underlying data, a table of basic descriptive statistics is displayed below.

Variable	min	max	mean	sd	var
Internet usage in leisure time (hours per day)	0	12	3.199	2.144	4.595

Table 5: Table continues below	Table	5:	Table	continues	below
--------------------------------	-------	----	-------	-----------	-------

median	IQR	skewness	kurtosis
3	2	1.185	1.533

Diagnostics

Since *t-test* is a parametric technique, it sets some basic assumptions on distribution shape: it has to be *normal* (or approximately normal). A few normality test are to be applied, in order to screen possible departures from normality.

Normality Tests We will use *Shapiro-Wilk*, *Lilliefors* and *Anderson-Darling* tests to screen departures from normality in the response variable (*Internet usage in leisure time (hours per day)*).

Ν	р	
Shapiro-Wilk normality test	0.9001	1.618e-20
Lilliefors (Kolmogorov-Smirnov) normality test	0.168	3e-52
Anderson-Darling normality test	18.75	7.261e-44

As you can see, applied tests yield different results on hypotheses of normality, so you may want to stick with one you find most appropriate or you trust the most.

Results

One Sample t-test was applied, and significant differences were found.

	statistic	df	р	$\operatorname{CI}(\operatorname{lower})$	CI(upper)
t	-0.007198	671	0.9943	3.037	3.362

This report was generated with R (3.0.1) and rapport (0.51) in 0.88 sec on x86_64-unknown-linux-gnu platform.

